翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

matrix normal distribution : ウィキペディア英語版
matrix normal distribution

| cdf =
| mean =\mathbf
| median =
| mode =
| variance =\mathbf (among-row) and \mathbf (among-column)
| skewness =
| kurtosis =
| entropy =
| mgf =
| char =
}}
In statistics, the matrix normal distribution is a probability distribution that is a generalization of the multivariate normal distribution to matrix-valued random variables.
== Definition ==
The probability density function for the random matrix X (''n'' × ''p'') that follows the matrix normal distribution \mathcal_(\mathbf, \mathbf, \mathbf) has the form:
:
p(\mathbf\mid\mathbf, \mathbf, \mathbf) = \frac \, \mathrm\left(\mathbf^ (\mathbf - \mathbf)^ \mathbf^ (\mathbf - \mathbf) \right ) \right)}|^ |\mathbf|^}

where \mathrm denotes trace and M is ''n'' × ''p'', U is ''n'' × ''n'' and V is ''p'' × ''p''.
The matrix normal is related to the multivariate normal distribution in the following way:
:\mathbf \sim \mathcal_(\mathbf, \mathbf, \mathbf),
if and only if
:\mathrm(\mathbf) \sim \mathcal_(\mathrm(\mathbf), \mathbf \otimes \mathbf)
where \otimes denotes the Kronecker product and \mathrm(\mathbf) denotes the vectorization of \mathbf.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「matrix normal distribution」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.